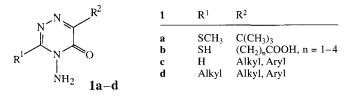
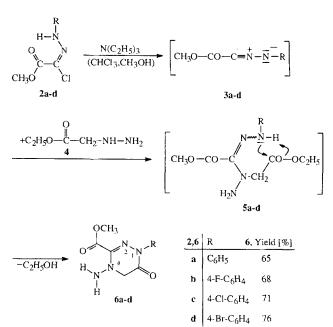
Synthesis of Methyl 4-Amino-1-aryl-1,4,5,6-tetrahydro-6-oxo-1,2,4-triazine-3-carboxylates

Mustafa M. El-Abadelah, Musa Z. Nazer, and Naser S. El-Abadlah


Amman (Jordan) Chemistry Department, University of Jordan

Herbert Meier

Mainz, Institut für Organische Chemie der Universität


Received May 22nd, 1996

A number of 1,2,4-triazines, especially 4-amino-1,2,4-triazin-5-ones (1a-d) was reported to exhibit herbicidal potency [1– 5]. A notable example is Metribuzin 1a which is considered among the best known and widely used herbicides [1–4].

This background prompted us to synthesize some derivatives of 1 by applying a novel reaction route. The reaction of α amino esters with nitrile imines (1,3-dipoles) was reported [6] to constitute a convenient and versatile one-pot synthetic route to 4,5-dihydro-1,2,4-triazin-6-ones. The present work deals with the reaction of ethyl 2-hydrazinoacetate (4) with nitrile imines 3a-d which were generated in situ from the corresponding hydrazonovl chloride precursors $2\mathbf{a} - \mathbf{d}$ by the action of triethylamine [6, 7]. Comparable to amines [8, 9] and α -amino esters [6, 7], ethyl 2-hydrazinoacetate (4) is expected to add selectively onto 3 by the attack of the NH group which is more nucleophilic than the NH₂ group. The generated amidrazones 5a-d, acyclic transients, can undergo in their (Z)-configuration a spontaneous cyclocondensation reaction by elimination of ethanol. The process corresponds to the "6-Exo-Trig" case of the Baldwin rules [10]. Yields between 65 and 76% of the resulting 1,2,4-triazines 6a-d were obtained under smooth conditions.

The structural assignment of 6a-d is based on IR, MS, ¹H and ¹³C NMR spectral data and on elemental analysis. The IR spectra in KBr exhibit strong absorption bands in the regions 3300–3350 cm⁻¹ (NH₂), 1740–1770 cm⁻¹ (ester CO), 1650–1670 cm⁻¹ (lactam CO) and 1600–1620 cm⁻¹ (CN and aromatic ring). The electron impact mass spectra of 6a-d gave prominent peaks for the molecular ions M⁺ (Table 1). A characteristic fragmentation mode involves a consecutive loss of CO

and H proved by high resolution MS data and metastable scanning.

The ¹H NMR spectra of **6a**–**d** contain singlets for the geminal protons 5-H, the methoxy and the amino group. The signals of the aromatic protons appear between $\delta = 7.2$ and 7.5 (Table1). The ¹³C NMR spectra display two signals in the low field region at 158–159 ppm and 160–162 ppm, respectively, which are correlated to C-6 and to the ester carbonyl group. (Table 2). The signal at 142–143 ppm belongs to the carbon atom C-3, while the four signals between 120 and 140 ppm emerge from the aromatic carbon atoms. The two close lying signals between 53 and 55 ppm were assigned to C-5 and the methoxy group. The differentiation made in Table 2 is based on DEPT experiments.

<i>m.p.</i> °C	$\frac{\text{MS}}{\text{M}^{+}(m/z)}$	Elemen		¹ HNMR ^a)						
		Calcd./Found			5-H	OCH ₃ NH ₂		Aryl (AA'BB'C or AA'BB')		
		C(%)	H(%)	N(%)	(s)	(s)	(s)			
159-160	248	53.22	4.87	22.56	4.18	3.87	4.21	7.48	7.37	7.25
		53.11	4.92	23.34						
184-185	266	49.63	4.16	21.04	4.20	3.88	4.23	7.45	7.05	_
		49.42	4.28	20.86						
134–135	282/284	46.74	3.92	19.81	4.20	3.88	4.23	7.46	7.32	_
		46.71	4.07	20.02						
139–140	326/328	40.39	3.39	17.13	4.20	3.88	4.23	7.46	7.32	_
		40.48	3.37	16.91						
	°Ć 159–160 184–185 134–135	°C M·+ (<i>m</i> / <i>z</i>) 159–160 248 184–185 266 134–135 282/284	°C M·+ (m/z) Calcd./I C(%) 159−160 248 53.22 53.11 184−185 266 49.63 49.42 134−135 282/284 46.74 46.71 139−140 326/328 40.39	°C $M^{+}(m/z)$ Calcd./Found C(%) $H(%)$ 159–160 248 53.22 4.87 53.11 4.92 184–185 266 49.63 4.16 49.42 4.28 134–135 282/284 46.74 3.92 46.71 4.07 139–140 326/328 40.39 3.39	°C $M^{+}(m/z)$ Calcd./Found C(%) $H(%)$ $N(%)159–160 248 53.22 4.87 22.5653.11 4.92 23.34184–185 266 49.63 4.16 21.0449.42 4.28 20.86134–135 282/284 46.74 3.92 19.8146.71 4.07 20.02139–140 326/328 40.39 3.39 17.13$	$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	

Table 1 Analytical data of the methyl 4-amino-1-aryl-1,4,5,6-tetrahydro-6-oxo-1,2,4-triazine-3-carboxylates (6a-d)

a) δ values in CDCl₃, TMS as internal standard

Table 2 ¹³C NMR Data of the methyl 4-amino-1-aryl-1,4,5,6-tetrahydro-6-oxo-1,2,4-triazine-3-carboxylates (6a-d) (δ values in CDCl₃, TMS as internal standard)

Compound				Ester CO/OCH ₃	C _i	Aryl C _o	C _m	C_p	¹ J(C,F)/Hz	² J/C,F)/Hz	³ J(C,F)/Hz
6a					139.9				0155	22.6	0.(
6b 6c	1			162.1/53.2 160.9/53.2	135.9 138.4				215.5	22.6	8.6
6d	143.0	54.6	158.7	160.9/53.3	139.1	126.3	132.2	121.4			

Experimental

Melting points were measured on a Gallenkamp Electrothermal Apparatus and are uncorrected. IR spectra were recorded as KBr pellets on a Perkin Elmer 577 spectrophotometer. ¹H and ¹³C NMR spectra were measured in CDCl₃ on a Bruker AM 400 instrument. EI MS spectra were obtained by using a Finnigan MAT 731 spectrometer at 70 eV. Elemental analyses were carried out by the M. H. W. Laboratories, Arizona, U.S.A.

The methyl 2-arylhydrazono-2-chloroacetates (**2a**–**d**) were prepared following a reported procedure [7]. Ethyl 2-hydrazinoacetate (**4**) is commercially available as hydrochloride.

General Procedure for the Preparation of the Methyl 4amino-1-aryl-1,4,5,6-tetrahydro-6-oxo-1,2,4-triazine-3carboxylates (6a-d)

To a solution of the appropriate 2-arylhydrazono-2-chloroacetate (**2a**–**d**), (20.0 mmol) in 40 ml of chloroform was added a solution of ethyl 2-hydrazinoacetate hydrochloride (3.71 g, 24.0 mmol) in methanol (40 ml). Triethylamin (10.1 g, 100 mmol) was added dropwise under stirring and cooling in an ice-bath. The reaction mixture was stirred for 2–3 h at 0–4 °C and then for 4 h at ambient temperature. The organic solvent was evaporated in vacuo, and the residue was washed with water (3 × 10 ml) and cold ethanol (5 ml), and recrystallized from chloroform/petrol ether (*b.p.* 40–60 °C). The crystalline products **6a–d** can be further purified on preparative TLC plates (silica gel GF₂₅₄, chloroform/methanol 95 : 5). The yields amount to 65–76% (Scheme 1). The Tables 1–3 contain the analytical and spectroscopic characterization.

References

- H. Neunhoeffer, P. F. Wiley, The Chemistry of 1,2,3-Triazines and 1,2,4-Triazines, Tetrazines and Pentazines, Vol. 23, p. 604 and 1001; series: The Chemistry of Heterocyclic Compounds, Eds. A. Weissberger, E. C. Taylor, J. Wiley & Sons, New York 1978
- [2] D. L. Hyzak, R. L. Zimdahl, Weed Sci. 22 (1974) 75; Chem. Abstr. 80 (1974) 104757
- [3] J. Synek, (Mobay Corp.), Braz. Pedido PI BR 86 05, 783 (1987); Chem Abstr. 108 (1988) 108174x
- [4] L. Eue, Pflanzenschutz-Nachr. (Am. Ed.) 25 (1972) 175;
 Chem. Abstr. 81 (1974) 100480x
- [5] R. H. Wiley, U. S. US 4,358,590 (1982); Chem. Abstr. 98 (1983) 72143v
- [6] M. M. El-Abadelah, A. Q. Hussein, B. A. Thaher, Heterocycles 32 (1991) 1879
- [7] M. M. El-Abadelah, A. Q. Hussein, M. R. Kamal, K.H. Al-Adhami, Heterocycles 27 (1988) 917 and references therein
- [8] R. N. Butler, F. L. Scott, Chem. Ind. (London) 1970, 1216
- [9] H. M. Hassaneen, H. A. H. Mousa, A. S. Shawali, M. Nosrat, Heterocycles 27 (1988) 695
- [10] J. E. Baldwin, J. Chem. Soc., Chem. Commun. 1976, 734

Address for correspondence: Prof. Dr. M. El–Abadelah University of Jordan Chemistry Department Amman, Jordan